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Abstract
Arc consistency algorithms are widely used to prune the search space of Constraint Satisfaction
Problems (CSPs). Coarse-grained arc consistency algorithms like AC-3 and AC-2001 are efficient
in establishing arc consistency on a given CSP. These algorithms repeatedly carry out revisions.
Revisions require support checks for identifying and deleting all unsupported values from the do-
mains. For difficult problems, many values find some support while revising domains. Indeed,
many revisions are ineffective, that is they cannot delete any value and consume a lot of checks and
time. We propose two solutions to overcome these problems. First we introduce the notion of a
Support Condition (SC). If the SC holds then it guarantees that a given value has some support. SCs
reduce support checks while maintaining arc consistency during search. Second, we introduce the
notion of a Revision Condition (RC). If the RC holds then it guarantees that all values of a given
domain have some support. An RC avoids a candidate revision and queue maintenance overhead.
Our experimental results show that for random problems, SCs reduce the support checks required
by MAC-3 (MAC-2001) up to 90% (72%). The RCs avoid at least 50% of the total revisions.
Combining the two, results in reducing 50% of the solution time.
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1. Introduction

Maintaining Arc Consistency (MAC) is considered to be one of the most efficient generic approach
in solving large and hard instances of Constraint Satisfaction Problems (CSPs) (Sabin and Freuder,
1994; Bessière and Régin, 1996). Each improvement in its underlying arc consistency algorithm
can enhance the performance of the MAC algorithm significantly. Therefore, proposing efficient
algorithms and techniques for enforcing arc consistency has been an interest of research from the
last two decades.

Arc consistency algorithms are based on the notion of a support. Most of the algorithms pro-
posed so far put a lot of effort in identifying a support to confirm the existence of a support. When
a support is sought for a given value in a given domain, a sequence of support checks is usually
performed. If a support exists it is identified, otherwise the value is deleted. Identifying the support
is more than is needed to guarantee that a value is supportable: knowing that a support exists is
sufficient.

AC-4 (Mohr and Henderson, 1986) is the only algorithm that confirms the existence of a support
by not identifying it throughout search. However, it stores all supports for each value in auxiliary
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data structures. Its inefficiency lies in its space complexity O(e d2) and the necessity of maintaining
huge data structures during search.

Coarse-grained algorithms such as AC-3 (Mackworth, 1977), AC-3.1/2001 (Bessiere et al.,
2005) repeatedly revise the domains in order to remove unsupported values. However, in many
revisions for difficult problems some or all values successfully find (identify) some support. This
may result in long sequences of support checks. If we can guarantee the existence of some support
for a given value without identifying it then a considerable amount of work in terms of checks and
time can be saved.

In this paper, we shall show that evaluating the constraints before search can bring forth inter-
esting knowledge. This knowledge can be captured in the form of weights and can be utilized ef-
fectively to reduce the cost of support inferencing in the coarse-grained arc consistency algorithms.
In particular, we shall introduce the notions of a Support Condition (SC) and a Revision Condition
(RC). If an SC holds, then it guarantees that a value has some support. It infers the existence of a
support without storing and maintaining support values. The SCs help to avoid many (but not all)
sequences of support checks. If an RC holds, then it guarantees that the SC holds for each value in
a given domain which in turn guarantees that all values have some support. The RCs help to avoid
many (but not all) ineffective revisions and much queue maintenance.

Both, the SC and RC are easy to implement. They have a limited overhead and a worst-case
space requirement of O(e d), where e is the number of constraints and d is the maximum domain
size. Results show that employing the SC and the RC in the coarse-grained algorithms significantly
reduces support checks, ineffective revisions and solution time.

The remainder of this paper is as follows. Section 2 describes some relevant definitions and
terminologies which are used throughout the paper. Sections 3 and 4 introduce the notions of
the support and the revision conditions respectively. Section 5 presents an algorithm to extract
information from constraints in the form of weights which are then used by the SC and RC for
support inferencing. Section 6 shows the integration of the SC and RC in AC-3 and discusses
related issues. Section 7 presents experimental results to show the efficiency of these conditions.
Finally, conclusions are presented in Section 8.

2. Background

A constraint satisfaction problem is defined as a set X of n variables, a non-empty domain D(x) for
each variable x ∈ X and a set of e constraints defined among subsets of variables of X . A binary
constraint Cxy between variables x and y is a subset of the Cartesian product of the domains D(x)
and D(y), which specifies the allowed pairs of the values. The tightness of the constraint Cxy is
defined as pt = 1− |Cxy |/|D(x)×D(y) |.

Graphs theory plays a central role in capturing the structure of a constraint satisfaction problem
and its solution process. The nodes of the constraint graph correspond to variables of the problem
and the edges correspond to constraints. The density of a binary constraint graph is defined as
pd = 2 e/(n2 − n). The degree of a variable is the number of constraints involving that variable.
We use degmax to denote the maximum degree of the variables. With each binary constraint Cxy,
we associate two arcs (x, y) and (y, x). The directed constraint graph of a given CSP is a directed
graph having an arc (x, y) for each combination of two mutually constraining variables x and y. We
shall use G to denote the directed constraint graph of the input CSP.
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A value b ∈ D(y) is called a support for a ∈ D(x) if (a, b) ∈ Cxy. Similarly a ∈ D(x) is called
a support for b ∈ D(y) if (a, b) ∈ Cxy. A support check (also known as consistency or constraint
check) is a test to find if two values support each other.

Definition 1 (Arc Consistency) An arc (x, y) in the directed constraint graph of a CSP is arc-
consistent if and only if every value a ∈ D(x) has some support b ∈ D(y). A CSP is arc-consistent
if and only if every arc in its directed constraint graph is arc-consistent.

Arc consistency ensures that any value in the domain of any variable has a support in the domain of
any other selected variable. We call the domain of x after making the input CSP arc consistent for
the first time the first arc-consistent domain of that variable. For the remainder of this paper for any
variable x, we use Dac(x) for the first arc-consistent domain of x, and D(x) for the current domain
of x.

A multi-set is an unordered collection of elements from a universe. The elements in a multi-set
are not necessarily distinct. For example, {1, 1, 1, 3} as a set is actually equal to {1, 3}. However,
as a multi-set, {{1, 1, 1, 3}} is not simplifiable further. To avoid confusion, we use the notation −m to
denote the asymmetric difference on multi-sets. For example, {{1, 1, 1, 3}} −m {{1, 3}} gives {{1, 1}}.

Definition 2 An integer partition of a positive integer n is a multiset p = {{λ1, λ2, · · · , λm}} such
that each λi is a positive integer and sum(p) = Σm

i=1λi = n. The λi are called the parts or
elements of the partition.

For example, the seven distinct integer partitions of 5 are {{5}}, {{4, 1}}, {{3, 2}}, {{3, 1, 1}}, {{2, 2, 1}},
{{2, 1, 1, 1}} and {{1, 1, 1, 1, 1}}.

3. A Support Condition

In this section, we shall introduce the notion of a support condition. We shall first introduce its
simple version which shall then facilitate us to present its generalized version.

3.1 A Simple Version of the Support Condition

Let Cxy be the constraint between x and y. Let a ∈ D(x) be denoted as (x, a). Let scount[x, y, a ]
be the number of supports of (x, a) in Dac(y). Let R(y) = Dac(y)\D(y) be the set of the removed
values from the first arc-consistent domain of y. Consequently, |R(y) | is an upper bound on the
number of supports of (x, a) removed from Dac(y). Therefore, if the following condition is true
then (x, a) is supported by y:

scount[x, y, a ] > |R(y) |. (1)

We call the condition in Equation (1) (a simple version of) the support condition. Independent work
by Boussemart et al. (2004) has also proposed an equivalent condition.

Let us illustrate the use of Equation (1). Consider the constraint Cxy as shown in Figure 1 (and
for now ignore w[x, y, a]). For each value ai ∈ D(x), 1 ≤ i ≤ 4, scount[x, y, ai] = 2. Assume that
exactly one value, say b2, is removed from D(y), that means |R(y)| = 1. We know that each value
of D(x) was supported by two values of Dac(y). Since only one value is removed from Dac(y),
each value of D(x) still has at least one support in D(y). This is exactly what Equation (1) implies.
If it holds then a support is guaranteed to exist and there is no need to identify a support.
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Figure 1: An example to illustrate the use of the simple version of support condition for support
inferencing.

3.2 A Generalized Version of the Support Condition

Let w[ y, x, b ] be some non-zero positive integer weight associated with b ∈ D(y) with respect to
x. The simple version of the SC shown in Equation (1) inherently assumes that w[ y, x, b ] = 1 for
each value b ∈ D(y) with respect to x.

Consider again Figure 1, and assume explicitly that w[y, x, b] = 1 for each value b ∈ D(y) with
respect to x. Notice that the support count of each value ai is equal to the sum of the weights of its
supports. For example, the support count of a1 is equal to 2, the sum of the weights of b1 and b2.
We can say that when the weight assigned to each value is 1,

scount[x, y, a ] =
∑

b ∈ Dac(y) ∧ (a,b) ∈ Cxy

w[ y, x, b ].

Similarly, we can say that when the weight assigned to each value is 1, the number of removed
values are equal to the sum of the weights of the removed values, that is

|R(y) | =
∑

b ∈ R(y)

w[ y, x, b ].

Thus, when the weight associated with each arc-value pair is 1, the Equation (1) can also be repre-
sented as follows: ∑

(a,b) ∈ Cxy

w[ y, x, b ] >
∑

b ∈ R(y)

w[ y, x, b ] (2)

We call the left hand side of Equation (2) the cumulative weight of (x, a) with respect to y, and
denote it as cw[x, y, a ]. It is equal to the sum of the weights of the values in Dac(y) supporting
(x, a). We call the right hand side of Equation (2) the removed weight of y with respect to x, and
denote it as rw[ y, x ]. It is equal to the sum of the weights of the values removed from Dac(y) with
respect to x. Thus, Equation (2) can also be represented as follows:

cw[x, y, a ] > rw[ y, x ] (3)

When the weight associated with each arc-value pair is 1, the cumulative weight of (x, a) with
respect to y is equal to the number of supports of (x, a) in Dac(y), the removed weight of y with
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respect to x is equal to the number of values removed from Dac(y), and Equation (1) is a simple
case of Equation (3). Note that if other non-zero positive integer weights are used and Equation
(3) holds, then also a support is guaranteed. We call the condition in Equation (3) the generalized
version of the Support Condition (SC).

Proposition 3 Let Ws be the multi-set of the weights of the values in Dac(y) supporting a ∈ D(x).
Let Wr be the multi-set of the weights of the values in R(y). If Ws −m Wr 6= ∅ then a ∈ D(x) has
some support in D(y).

Consider a constraint Cxy, a ∈ D(x) and Dac(y) = {b1, b2, b3, b4, b5}, wherein, the weight of b1

is 1, b2 is 2, b3 is 1, b4 is 2 and b5 is 1. Also, assume that the set of supports of (x, a) in Dac(y)
is {b1, b2, b3} and R(y) = {b2, b3, b4}. It then follows that Ws = {{1, 2, 1}} and Wr = {{2, 1, 2}}.
Note that Ws −m Wr 6= ∅, which means that some element of Ws is not in Wr. Here that element
is 1. Since there are two 1s in Ws and only single 1 in Wr, it implies that either b1 or b3 is not in
R(y). Therefore, one can conclude that at least one of them is in D(y) and a ∈ D(x) has at least
one support in D(y).

Theorem 4 Let cw be the cumulative weight of a ∈ D(x) with respect to y. Let rw be the removed
weight of y with respect to x. If cw > rw then a ∈ D(x) is supported by some value of D(y).

Proof Let C denote the set of multi-sets of all integer partitions of cw. Let R denote the set of multi-
sets of all integer partitions of rw. If cw > rw then it follows that ∀c ∈ C,∀r ∈ R, c −m r 6= ∅.
Let Ws denote the multi-set of the weights of the values in Dac(y) supporting a ∈ D(x) and Wr

denote the multi-set of the weights of the removed values. From the definition of cumulative weight,
we have cw = sum(Ws) and from the definition of removed weight, we have rw = sum(Wr).
Therefore, Ws ∈ C, Wr ∈ R and Ws−m Wr 6= ∅. It now follows from Proposition 3 that a ∈ D(x)
has some support in D(y).

3.3 Impact of using Different Weights

We shall now illustrate the impact of using different weights on the efficiency of the SC. In Figure 2,
Case 1, the weight associated with each value of D(y) is 1, whereas, in Case 2, it is its own support
count. Let us study the behavior of the SC while revising D(x) against D(y), when one or more
values are removed from D(y).

If any single value is removed from the domain of y, then the SC will hold for each value of
D(x) in both the cases. Hence, there is no need to seek a support. For example, if b1 is removed,
then rw[ y, x ] = 1 for both the cases. A support is guaranteed for any value of a ∈ D(x) in D(y),
since cw[x, y, a ] is greater than rw[ y, x ].

Now, if b4 is also removed, then rw[ y, x ] becomes 2 for both the cases. Although b1 and b4 are
removed, all the values of D(x) will still be supported by some value of D(y). However, the SC

will fail for each value of D(x) for Case 1, since the cumulative weight of any value of D(x) is not
greater than the removed weight of y with respect to x. But, in Case 2, the cumulative weight of
each value of D(x) is greater than 2. Thus, the SC will infer the support existence for each value of
D(x) without requiring to seek a support.

41



DEEPAK MEHTA

1

2

3

4

a

a

a

a 1

2

3

4

b

b

b

b

1

1

1

1

w[y,x,b]

yx

cw[x,y,a]

2

2

2

2 1

2

3

4

a

a

a

a 1

2

3

4

b

b

b

b 1

3

3

1

w[y,x,b]

yx

cw[x,y,a]

4

6

6

4

Case 1 Case 2

Figure 2: Weights of the values: in Case 1 the weight associated with each bi is 1 and in Case 2 the
weight associated with each bi is its own support count with respect to x. The cumulative
weight of each ai ∈ D(x) is computed for each case accordingly.

In another scenario, if only b1 and b2 are removed, then in Case 1, rw[ y, x ] = 2 and in Case
2, rw[ y, x ] = 4. The SC will again fail for each value in Case 1. However, in Case 2, the SC will
hold for at least a2 and a3, since their cumulative weights are greater than 4. This shows that the
efficiency of the SC may depend on the weights assigned to the values.

3.4 How to assign weights?

A natural question arises: is there some way of assigning weights to arc-value pairs so that support
inferencing using SC can be increased. One possible way is to assign a weight to a value of a domain
such that it is greater than the aggregate of the weights of all the values which will be removed from
the domain before that value.

Let us consider the same constraint Cxy as illustrated in Figure 1. We shall use bi <r bj to
indicate that bi is removed before bj . Assume that the order in which the values are removed from
the domain of y is b1 <r b2 <r b3 <r b4 that is, first b1 is removed, then b2 and so on. For now, we
shall omit the use of variables x and y in w[x, y, b] for the comfort of representation.

Following the idea mentioned before, the weight of b1 should be the lowest, since b1 will be
deleted first. The weight of b2 should be greater than the weight of b1, i.e. w[b2] > w[b1], since b1

will be removed before b2. Similarly, w[b3] > w[b2] + w[b1] and w[b4] > w[b3] + w[b2] + w[b1].
One way of assigning the weights to the values, while satisfying these conditions is possible with
the help of the following equation:

w[ y, x, bj ] = 1 +
∑

bi∈Dac(y)∧ bi<rbj

w[y, x, bi]. (4)

Figure 3 depicts the weights assigned to the values of the domain of y by using Equation (4).
The cumulative weights of a1, a2, a3 and a4, therefore, become 3, 6, 6, and 12 respectively. Now,
let us study the consequences of the removal of the values from Dac(y) in the increasing order of
their subscripts.

When only b1 is removed, there is no need to seek a support for any value of D(x), since the
SC succeeds for each value of D(x). When the two values b1 and b2 are deleted, rw[ y, x ] becomes
3. Unlike Case 2 of Figure 2, where the SC was unsuccessful for a1 and a4 here it fails only for
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Figure 3: The weight for each bi ∈ D(y) is computed using Equation (4) based on which the
cumulative weight for each ai is evaluated.

a1. More importantly, the SC fails for a1, when all its supports are deleted. When b1, b2 and b3

are deleted, the removed weight of y becomes 7 and the SC fails for a1, a2 and a3. Again, notice
that the SC fails for a given value only when the value has lost all its supports and is bound to get
removed.

In summary, if the order in which the values are removed is known beforehand, then using
Equation (4) to compute the weights empowers SC to infer the support existence for a given arc-
value pair as long as the value has at least one support. It fails only when the value loses all its
supports. So, whenever the SC fails, the corresponding value can be removed without verifying the
absence of a support. This suggests that not a single support check is required if the SC is used while
revising a domain. However, knowing the order in which the values are removed from the domains
in advance is almost impossible. Yet, this can be used as a guiding factor to assign the weights to
the values.

A general strategy should be: the value with a less likelihood of staying in the domain for a
longer time should be assigned a lower weight and vice-versa. One way of measuring this likelihood
is to use support counts as weights. An illustration of this is shown in Case 2 of Figure 2. A value
having a lower support count is more likely to be removed before a value having a higher support
count. Not that a variable is usually constrained by more than one variable in a given CSP. In such a
situation, a value may have more supports in one variable’s domain and fewer in another. Assigning
just support counts as weights does not take this into consideration. Therefore, instead of support
counts, the sum of the support counts can also be used as weights. For example, if there is a value
a ∈ D(x) and if x is constrained with y and z then the sum of the support counts of (x, a) with
respect to y and z can be used as its weight with respect to both y and z. We will see further on (in
Section 7) that using support counts and sums of support counts as weights allows the SC to save
more checks.

4. A Revision Condition

The support check is the core operation performed by arc consistency algorithms. Most of the im-
provements suggested so far to reduce the number of support checks are done at a fine level of
granularity, that is at the level of arc-value pair. For example, validity checks in AC-3.1, checking
the status of the support counters in AC-4, etc. We call all these tests auxiliary support checks
(ASCs). When support checks are not too expensive then auxiliary support checks can be an over-
head and reducing the support checks alone does not always help in reducing the solution time. In
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this section, we shall propose a coarser check at arc level to avoid a complete revision which will
not only save support checks but also auxiliary support checks.

For a given arc, (x, y), if the least cumulative weight of the values of D(x) with respect to y is
greater than the removed weight of y with respect to x, then it follows that the cumulative weight
of all the values of D(x) are greater than the removed weight from y. Therefore, if the following
condition holds, then each value in D(x) is guaranteed to have a support in D(y):

min {cw[x, y, a ] : a ∈ D(x)} > rw[ y, x ] . (5)

The drawback of using Equation (5) is that for any given arc, (x, y), it requires the least cumulative
weight of the values D(x) with respect to y, which may change during search as values are pruned.
Therefore, it may be necessary to recompute and maintain the least cumulative weight of D(x) with
respect to y for each arc (x, y) during search, which can be an overhead. Nevertheless, there is a
possibility of reducing this overhead by weakening the condition presented in Equation (5) at the
cost of performing few more ineffective revisions.

We define the cumulative weight of an arc, (x, y), as less than or equal to the least cumulative
weight of the values of D(x) with respect to y and denote it as cw[x, y], which can be expressed as
follows:

cw[x, y] ≤ min {cw[x, y, a ] : a ∈ D(x)} . (6)

If the cumulative weight of an arc, (x, y), is greater than the removed weight from y, then it follows
that the cumulative weights of all the values of D(x) are also greater than the removed weight from
y. Therefore, if the following condition holds then each value in D(x) is guaranteed to have a
support in D(y):

cw[x, y ] > rw[ y, x ] . (7)

We call this condition a Revision Condition (RC). If the RC holds for a given arc, (x, y), then
it guarantees that all values in D(x) have some support in D(y) and a complete revision can be
avoided. In the following sections, we shall present the dynamic, partially dynamic and static
versions of the RC. The difference lies in the frequency by which the cumulative weights of the arcs
are updated during search.

4.1 The Dynamic Revision Condition

In the Dynamic Revision Condition (DRC), the cumulative weight of an arc, (x, y), is equivalent
to the least cumulative weight of the values of D(x) with respect to y. This can be expressed as
follows:

cw[x, y] = min {cw[x, y, a ]|a ∈ D(x)} .

Note that if the revision of D(x) against some variable’s domain removes even one value, then the
least cumulative weight of D(x) with respect to all its neighbors y may change. Therefore, for the
DRC, there is a need to recompute the least cumulative weight of D(x) with respect to each y with
which x is constrained after every effective revision of D(x).

4.2 The Partially Dynamic Revision Condition

Computing the least cumulative weight of D(x) with respect to each y with which x is constrained
after every effective revision of D(x) can be an overhead. One alternative is to compute the least
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cumulative weight of D(x) with respect to y only when D(x) is revised against D(y). This can
be done cheaply and may avoid the ineffective revision of D(x) against D(y) in future. Here, the
cumulative weight of an arc, (x, y), is less than or equal to the least cumulative weight of the values
of D(x) with respect to y, which can be expressed as follows:

cw[x, y] ≤ min {cw[x, y, a ]|a ∈ D(x)} .

We call it a Partially Dynamic Revision Condition (PDRC) because the cumulative weights of all
the affected arcs are not updated after every effective revision. The disadvantage is that all possible
ineffective revisions cannot be saved which can be saved by the dynamic RC.

4.3 The Static Revision Condition

If the cumulative weight of an arc, (x, y), is the least cumulative weight of the values of the first
arc consistent domain of x then it remains static throughout the search. This can be expressed as
follows:

cw[x, y] = min {cw[x, y, a ]|a ∈ Dac(x)} .

We call it a Static Revision Condition (SRC). In this setting, once the cumulative weights of the arcs
are initialized, they are never updated. This may not reduce as many ineffective revisions as can be
reduced by the dynamic or the partially dynamic revision conditions.

Independent work by Boussemart et al. (2004) has proposed a condition similar to the SRC.
However, their proposed condition is a special case of the SRC, where the weight associated to each
arc-value pair is 1.

5. Computation of the Cumulative Weights

In order to use the SC and the RC a non-zero positive integer weight should be assigned to each
arc-value pair and the cumulative weight should be computed for each arc-value pair and arc. This
can be done either before or after arc consistency preprocessing. However, there are at least three
advantages of doing it after arc consistency preprocessing, which are as follows:

• Occasionally, enforcing arc consistency alone can deliver a solution without requiring further
search for some problems, in which case the work required to compute the cumulative weights
can be saved.

• For some over-constrained problems, applying arc consistency can prove the inconsistency of
the constraint network without search. In such cases also, the computation of the cumulative
weights is unnecessary.

• Computing the cumulative weights after arc consistency preprocessing may help the SC and
the RC in reducing more checks and ineffective revisions respectively.

The procedure assignWeights is used to assign some weight to weight[x, y, a ], for each arc-
value pair, involving the arc (x, y) and the value a in Dac(x). The procedure computeCumula-
tiveWeights is used to compute the cumulative weights for each arc-value pair and each arc. The
implementations of these two procedures are left open. In practice, they are integrated to effectively
compute the cumulative weights. However, for the sake of simplicity and easy understanding, we
shall treat them separately.

45



DEEPAK MEHTA

The implementation of assignWeights varies with respect to the criterion used to assign a weight
to each arc-value pair. Assigning the weight 1 to each arc-value pair is straightforward. But, when
the weight assigned to each arc-value pair is its own support count, effort has to be made to compute
the support counts. There may exist many different criteria to assign the weights. It is out of the
scope of this paper to investigate them and present their corresponding algorithms.

The efficient implementation of computeCumulativeWeights depends upon the way constraints
are represented. Here efficient implementation refers to minimizing the number of support checks.
The algorithm presented in Figure 4 is general in the sense that it does not depend upon the spec-
ification of constraints. It is certainly not competitive with an algorithm which can be written for
specific types of constraints. For example, it is possible to exploit the semantics of the intensional
constraints.

The algorithm presented in Figure 4 assumes that some reasonable weight is assigned to each
arc-value pair. It exploits the bidirectional property of constraints to halve the number of support
checks (line 13). The algorithm also assumes that an optimal coarse-grained algorithm such as
AC-3.1 is used to make the problem arc consistent before computing the cumulative weights. Note
that AC-3.1’s last[x, y, a ] data structure stores last known support of (x, a) with respect to y which
is also the first support of (x, a) in Dac(y). The idea is to explore the values in Dac(y) that are after
the first support of a ∈ D(x) to find the remaining supports (line 10). This may save some support
checks. The worst-case time complexity of the algorithm is O(e d2).

procedure computeCumulativeWeights ( )
begin
1: for each Cxy ∈ C do
2: for each a ∈ Dac(x) do
3: cw [ x, y, a ] := 0
4: for each b ∈ Dac(y) do
5: cw [ y, x, b ] := 0
6: for each a ∈ Dac(x) do
7: b′ := last[ x, y, a ]
8: cw [ x, y, a ] := weight[ y, x, b′ ]
9: cw [ y, x, b′ ] := cw [ y, x, b′ ] + weight[ x, y, a ]
10: for each b ∈ Dac(y) such that b > last [ x, y, a ] do
11: if b supports a then
12: cw [ x, y, a ] := cw [ x, y, a ] + weight[ y, x, b ]
13: cw [ y, x, b ] := cw [ y, x, b ] + weight[ x, y, a ]
14: cw [ x, y ] := min{cw [ x, y, a ]|a ∈ Dac(x)}
15: cw [ y, x ] := min{cw [ y, x, b ]|b ∈ Dac(y)}
end

Figure 4: An algorithm to compute cumulative weights.

6. Integrating SC and RC in AC-3

In this section, we shall be concerned with the integration of the SC and the RC in AC-3.
If the RC holds, then it can be exploited either after selecting an arc, (x, y), from the queue

for the next revision or while adding the arcs to the queue. In the former case the corresponding
revision is not carried out and in the latter case the arc (x, y) is not added to the queue. We will use
the RC by tightening the condition for adding the arcs to the queue: arcs should be added only if the
RC does not hold. This is depicted in line 8 of Figure 5. With this implementation the advantages of
using the RC are threefold:
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• It reduces the number of arcs that have to be added to the queue, which reduces the overhead
of queue management and saves time.

• It reduces the number of arcs that are present in the queue. This speeds up the selection of the
optimal arc.

• The number of ineffective revisions are reduced. This in turn reduces the number of support
checks and in case of an optimal coarse-grained algorithm, it also reduces auxiliary support
checks.

Function AC-3: Boolean;
begin
1: Q := G
2: while Q not empty do
3: select and remove any arc (x, y) from Q
4: revise(x, y, changex)
5: if D(x) = ∅ then
6: return False
7: if changex then
8: Q := Q ∪ { (y′, x) | y′ is a neighbour of x ∧ y′ 6= y∧ cw[ y′, x ] ≤ rw[ x, y′ ]}
9: return True;
end

Figure 5: AC-3 equipped with RC.

Pseudo-code for the revise function of AC-3 is depicted in Figure 6. It is different from its
original version (Mackworth, 1977) because it uses the SC to avoid a series of checks for which it
can be known in advance that it will eventually lead to a support (lines 3-4). If a ∈ D(x) fails to
find a support in D(y), then it is removed from D(x) and the removed weight of x with respect to
each y′ with which x is constrained is updated (lines 7–8).

Function revise(in x, in y, out changex)
begin
1: changex := False
2: for each a ∈ D(x) do
3: if cw[ x, y, a ] > rw[ y, x ] then
4: continue /* a is supported */
5: else if @b ∈ D(y) such that b supports a then begin
6: D(x) := D(x) \ { a }
7: for each y′ such that (y′, x) ∈ G do
8: rw[ y′, x ] := rw[ y′, x ]− weight[ x, y′, a ]
9: changex := True
end

Figure 6: Algorithm revise of AC-3 equipped with SC.

Note that the cumulative weights associated with arc-value pairs remain static during search.
Hence, there is no overhead of maintaining them. However, the cumulative weights associated
with arcs may change depending upon the version of the RC used in AC-3. The worst-case time
complexity of updating the cumulative weight of a single arc is O(d).

The integration of the RC in AC-3 is presented in such a way that the idea is made as clear as
possible. This should not be taken as the real implementation. When the SRC is used, there is no
overhead of maintaining the cumulative weights of the arcs, since they are never updated. When the
PDRC is used, the cumulative weight of an arc needs to be updated when that arc is considered for
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the next revision. When the DRC is used, the cumulative weights of at most degmax arcs may need
to be updated after an effective revision.

Note that a 2-dimensional array rw is used to store the removed weights. In the actual imple-
mentation, rw does not always need to be a 2-dimensional array. If the weight assigned to a given
value is different with respect to different arcs then the removed weights of the affected arcs are
updated with the weight of the removed value corresponding to those arcs respectively. In such a
case, the 2-dimensional array is required. However, when the weight assigned to a value is the same
with respect to different arcs, removing a value will update the removed weight of the affected arcs
by the same weight. Therefore, in such a case, one dimensional-array is sufficient.

The space complexity of storing the cumulative weights of the arc-value pairs is O(e d). Ini-
tially, the space complexity of storing the removed weights and the cumulative weights of the arcs
is O(e). But depending upon the version of the RC, the worst-case space complexity may increase
to O(e d) during search. The overall space complexity of using the SC in conjunction with the RC

is O(e d).

7. Experimental Results

In this section, we shall present some empirical results to demonstrate the practical efficiency of the
support condition and the revision condition.

We use the SC and RC in the arc consistency components of MAC-3 and MAC-3.1. The arc
consistency components of both the algorithms were equipped with comp (Van Dongen, 2004) as a
revision ordering heuristic. During search all MACs visited the same nodes in the search tree. They
were equipped with a dom/deg (Bessière and Régin, 1996) variable ordering heuristic.

We used three different measures of assigning the weights to arc-value pairs: w1 denotes that
the weight associated with each arc-value pair is 1, wsc denotes that the weight associated with each
arc-value pair is its own support count and wΣsc denotes that the weight associated with each arc-
value pair is the sum of the support counts of the value with respect to each constraint it is involved
in.

The experiments were performed on random problems, RLFAP problems and quasi-group prob-
lems with holes (QWH). They are described in the following sections with their corresponding
results. Performance is measured in terms of the number of support checks, the solution time (in
seconds) and the number of revisions. All algorithms were written in C. The experiments were
conducted on a PC Pentium III (2.266 GHz processor and 256 MB RAM).

7.1 Random Problems

We experimented with the model B random problems. In this model, a random CSP instance is
characterized by 〈n, d, pd, pt 〉 where n is the number of variables, d is the uniform domain size,
pd is the density of the constraint graph and pt is the uniform tightness of each constraint. We
generated instances for n = 50, d = 10, (pd, pt) ∈ {(0.20, 0.36), (0.40, 0.20), (0.60, 0.14),
(0.80, 0.13), (1.00, 0.12)}. For each combination of 〈n, d, pd, pt〉, 50 instances were generated.
Tables 1–3 present mean results for the problem classes 〈50, 10, 0.20, 0.36〉, 〈50, 10, 0.60, 0.14〉,
and 〈50, 10, 1.00, 0.12〉 respectively. The problem parameters were chosen deliberately to show the
efficiency of the SC and the RC on the problems which are located in the phase transition (Cheese-
man et al., 1991). For random problems support checks were implemented as cheap lookup array
operations.
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MAC-3 MAC-3.1
Condition Weight Checks Time Revisions Checks Time
- - 4,441,840 0.350 768,330 1,393,532 0.403
SC w1 2,586,069 0.330 768,330 1,277,170 0.368
SC + DRC w1 2,586,069 0.363 641,941 1,277,170 0.436
SC + PDRC w1 2,586,069 0.339 678,956 1,277,170 0.388
SC + SRC w1 2,586,069 0.315 685,822 1,277,170 0.354
SC wsc 2,096,077 0.395 768,330 1,137,447 0.448
SC + SRC wsc 2,096,077 0.370 648,807 1,137,447 0.421
SC wΣsc 2,168,242 0.329 768,330 1,176,443 0.372
SC + SRC wΣsc 2,168,242 0.303 654,978 1,176,443 0.356

Table 1: Mean results for the random problems 〈50, 10, 0.20, 0.36〉.

MAC-3 MAC-3.1
Condition Weight Checks Time Revisions Checks Time
- - 1,522,785,770 161.329 389,148,996 478,439,578 186.139
SC w1 414,748,936 165.230 389,148,996 279,726,796 182.498
SC + DRC w1 414,748,936 138.576 205,415,241 279,726,796 196.237
SC + PDRC w1 414,748,936 141.799 263,147,033 279,726,796 158.655
SC + SRC w1 414,748,936 137.367 279,471,217 279,726,796 152.998
SC wsc 295,815,188 198.638 389,148,996 221,013,167 219.326
SC + SRC wsc 295,815,188 153.456 227,939,382 221,013,167 171.796
SC wΣsc 309,733,345 162.530 389,148,996 227,008,534 177.562
SC + SRC wΣsc 309,733,345 118.859 238,484,341 227,008,534 134.982

Table 2: Mean results for the random problems 〈50, 10, 0.60, 0.14〉.

Tables 1–3 show that the SC reduces the number of support checks and the RC reduces the
number of revisions. For instance, for the random problem class 〈50, 10, 1.00, 0.12〉 in Table 3,
the support checks required by MAC-3 and MAC-3.1 are reduced by at least 90% and 72% re-
spectively by using only SC. Nonetheless, the solution time is not reduced much. This shows that
performing auxiliary support checks to reduce support checks is not a great help in reducing the
overall solution time, especially when the support checks are cheap. As expected, the DRC saves
more ineffective revisions than the PDRC, which in turn saves more ineffective revisions than the
SRC. On the contrary, the SRC is more efficient in terms of time than the PDRC, which in turn is
more efficient than the DRC. This is because there is an overhead to update the cumulative weights
of arcs for the DRC and the PDRC. The results for the algorithms when they are equipped with the
DRC or the PDRC are shown only with respect to w1.

Note that when the weights are assigned using w1 or wΣsc criteria, removing a single value
from a given variable’s domain requires only O(1) operation to update the removed weight of the
variable with respect to all its neighbors with which it is constrained. Thus, 1-dimensional array
rw is sufficient. However, when wsc is used, a 2-dimensional array is required for rw, since the
weight associated with a given value may be different with respect to different arcs. Therefore,
O(degmax) operations are performed in the worst-case after every deletion to update the removed
weights, which is an overhead. Therefore, the SC + SRC spends more time with respect to wsc than
they spend with respect to w1 or wΣsc.

49



DEEPAK MEHTA

MAC-3 MAC-3.1
Condition Weight Checks Time Revisions Checks Time
- - 194,469,206 23.244 41,957,598 54,027,225 24.473
SC w1 26,592,399 20.371 41,957,598 18,832,724 22.423
SC + DRC w1 26,592,399 15.072 13,482,255 18,832,724 23.143
SC + PDRC w1 26,592,399 13.737 18,789,129 18,832,724 15.341
SC + SRC w1 26,592,399 13.245 20,007,585 18,832,724 14.965
SC wsc 19,153,698 25.741 41,957,598 15,080,588 27.951
SC + SRC wsc 19,153,698 16.457 14,110,869 15,080,588 18.023
SC wΣsc 20,870,288 19.545 41,957,598 16,074,448 21.677
SC + SRC wΣsc 20,870,288 10.048 15,627,124 16,074,448 12.489

Table 3: Mean results for the random problems 〈50, 10, 1.00, 0.12〉.

7.2 Radio Link Frequency Assignment Problem

A Radio Link frequency Assignment Problem (RLFAP) is to assign frequencies to a set of radio links
defined between pairs of sites in order to avoid interferences (Cabon et al., 1999). Tables 4 and 5
correspond to the result of RLFAP#11, when solved with MAC-3 and MAC-3.1respectively.

initial Search Total
Condition Weight Checks Time Checks Time Checks Time Revisions
- - 971,893 0.018 41,547,613 1.965 42,519,506 1.982 1,602,603
SC w1 7,010,181 0.097 21,419,292 1.342 28,429,473 1.439 1,602,603
SC + DRC w1 7,010,181 0.103 21,419,292 1.173 28,429,473 1.277 750,731
SC + PDRC w1 7,010,181 0.096 21,419,292 1.003 28,429,473 1.099 752,277
SC + SRC w1 7,010,181 0.102 21,419,292 0.949 28,429,473 1.051 752,312
SC wsc 7,010,181 0.163 21,268,715 1.947 28,278,896 2.110 1,602,603
SC + SRC wsc 7,010,181 0.162 21,268,715 1.468 28,278,896 1.630 746,169
SC wΣsc 14,022,597 0.355 21,036,914 1.395 35,059,511 1.750 1,602,603
SC + SRC wΣsc 14,022,597 0.358 21,036,914 0.992 35,059,511 1.350 746,190

Table 4: Results for RLFAP#11 when solved with MAC-3.

initial Search Total
Condition Weight Checks Time Checks Time Checks Time Revisions
- - 971,893 0.025 9,361,105 1.585 10,332,998 1.610 1,602,603
SC w1 7,010,181 0.098 8,136,873 1.487 15,147,054 1.585 1,602,603
SC + DRC w1 7,010,181 0.096 8,136,873 1.460 15,147,054 1.556 750,731
SC + PDRC w1 7,010,181 0.095 8,136,873 1.124 15,147,054 1.220 752,277
SC + SRC w1 7,010,181 0.098 8,136,873 1.059 15,147,054 1.157 752,312
SC wsc 7,010,181 0.162 8,201,259 2.146 15,211,440 2.308 1,602,603
SC + SRC wsc 7,010,181 0.166 8,201,259 1.662 15,211,440 1.828 746,169
SC wΣsc 14,022,597 0.377 7,985,510 1.508 22,008,107 1.885 1,602,603
SC + SRC wΣsc 14,022,597 0.381 7,985,510 1.100 22,008,107 1.482 746,190

Table 5: Results for RLFAP#11 when solved with MAC-3.1.

The column labeled as ”initial” refer to the stage of making the problem arc-consistent before
search and the work, if any, required to compute the cumulative weights. The overhead of computing
the cumulative weights increases the time required to finish the initial stage by an order of magnitude
which is between 5 and 20, depending upon the criterion used to assign weight. However, this
initial investment of computing the cumulative weights pays off by avoiding at least 50% of the
total revisions using any version of the RC. When the SC and the SRC are used together and w1 is
used to assign the weights, there is a 50% and 30% reduction in the solution time of MAC-3 and
MAC-3.1 respectively.
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7.3 Quasigroup Problem with Holes

Table 6 corresponds to the mean results of five instances of balanced Quasigroup problem With
Holes (QWH) (Achlioptas et al., 2000) of order 20. The instances were used as benchmarks for
the First International Constraint Satisfaction Solver Competition. The procedure of generating the
instances is described in (Boussemart et al., 2005).

MAC-3 MAC-3.1
Condition Weight Checks Time Revisions Checks Time
- - 236,971,905 65.763 91,198,921 89,924,612 72.062
SC w1 37,787,658 63.975 91,198,921 24,041,064 68.731
SC + DRC w1 37,787,658 47.793 28,701,213 24,041,064 70.260
SC + PDRC w1 37,787,658 42.423 38,953,813 24,041,064 45.692
SC + SRC w1 37,787,658 40.362 38,953,813 24,041,064 44.421
SC wsc 32,307,142 86.243 91,198,921 21,890,725 88.840
SC + SRC wsc 32,307,142 45.860 20,692,635 21,890,725 48.384
SC wΣsc 33,046,110 63.662 91,198,921 22,250,939 66.465
SC + SRC wΣsc 33,046,110 32.346 27,166,530 22,250,939 34.645

Table 6: Results for Quasigroup Problem with Holes of order 20.

When the SC is used in MAC-3 and MAC-3.1, the number of support checks are reduced by
at least 84% and 73% respectively, which is significant. Yet, there is only a marginal saving in
terms of solution time. It is interesting to note that MAC-3 with the SC requires fewer checks than
the original version of MAC-3.1. Remember that MAC-3 uses a non-optimal algorithm AC-3
while MAC-3.1 uses an optimal algorithm AC-3.1. When the revision condition is used in the
algorithms, the number of revisions are reduced by at least 50%, which results in saving significant
amount of time. When the SC and the SRC are used together and wΣsc is used as a criterion to
compute and assign the weights, there is on average, a 50% reduction in the solution time of MAC-3
and MAC-3.1.

Any instance of QWH problem basically consists of anti-functional constraints. If a constraint
Cxy is an anti-functional constraint, then for each value a ∈ D(x) there is at most one value
b ∈ D(y) which is not a support of a. For such a constraint, when the SRC is used in any coarse-
grained arc consistency algorithm with respect to w1, D(x) is never considered for the revision as
long as |D(y)| > 1. Note that the algorithm AC-5 Van Hentenryck et al. (1992) uses a tailored
procedure for anti-functional constraints. If it is used on the instances of QWH, then an arc, (x, y),
is considered for the revision only when |D(y)| = 1.

An anti-functional constraint can sometimes also be a universal constraint, i.e. a constraint
which holds for all possible pairs of values of given domains. When AC-5 encounters such a
constraint, Cxy, it revises D(x), when |D(y)| = 1, and this results in an ineffective revision. Such
ineffective revisions can be avoided by using the revision condition. Moreover, tailored algorithms
are limited to the problems for which they are designed. A slight change in the problem specifica-
tion would render the algorithm inapplicable. For example, instead of conflicting with at the most
one value, if just a single value conflicts with 2 values, then AC-5 cannot take the advantage of
this knowledge. However, both the SC and the RC can take advantage and can save some ineffec-
tive propagation. The SC and the RC not only improve the generic filtering but also reduce the gap
between the generic and the specific constraint propagation procedures, which is also one of the
challenges of the constraint programming community.
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8. Conclusion

In this paper, we showed that evaluating the constraints before search can provide interesting and
useful knowledge which can be used to reduce the cost of support inferencing. We introduced the
notions of the support condition and the revision condition. We further introduced the dynamic,
partially dynamic and static versions of the revision condition. If the SC holds, then it guarantees
the existence of some support without identifying it. The SCs avoid many sequences of support
checks. If the RC holds, then it guarantees the existence of some support for each value in a given
domain and avoids the corresponding revision. The RCs reduce the number of arcs that have to be
added to the queue. Having fewer arcs in the queue improves the process of selection of the best arc
from the queue. Furthermore fewer revisions are performed. In short, the SC and the RC improve the
performance of generic arc consistency algorithms by reducing ineffective constraint propagation.

The efficiency of the SC and the RC in reducing the checks and revisions depends on the weights
assigned to arc-value pairs. In general, a value with a less likelihood of staying in the domain for a
longer time should be assigned a lower weight and vice-versa. Empirical results suggest that when
support checks are cheap, reducing them by using auxiliary support checks such as the SCs, does not
payoff a lot in terms of the solution time. However, the use of the RC saves time, since it not only
reduces support checks but also auxiliary support checks and queue maintenance. The overhead of
maintaining the cumulative weights of the arcs in the dynamic and the partially dynamic versions
of the RC penalize the algorithms in terms of time when compared to the static version of the RC,
where there is no such overhead.
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