
Constraint Programming Letters 1 (2007) 3-5 Submitted 5/2007; Published 11/2007

Holy Grail Redux

Eugene C. Freuder e.freuder@4c.ucc.ie

Cork Constraint Computation Centre

Computer Science Department

University College Cork

Cork, Ireland

Editor: Pascal Van Hentenryck

Ten years ago I participated in the ACM Workshop on Strategic Directions for Comput-
ing Science and wrote one of the position papers that subsequently appeared in the ACM

Computer Surveys and in a special issue of the Constraints journal. My paper was entitled
”In Pursuit of the Holy Grail”, and posited that Constraint Programming could bring us
nearer the ultimate ”declarative” goal of Computer Science: The user states a problem; the
computer solves it.

Apparently in the original script for Monty Python and the Holy Grail, the Grail is found
at Harrods department store in London. There is a lesson here. Accessibility is the way
forward for Constraint Programming. In preparing for the CP 2006 panel on the next ten
years of Constraint Programming, the first thing I did was to look back over my previous
position paper, and ”grade” our progress towards the goals I set forth there. The result
was disappointing, in large part because those goals already devoted a lot of attention to
”accessibility” issues - making it easier to write and to use constraint programs - while
the lion’s share of research activity in the past ten years has remained focused on faster
algorithms.

I conducted a little unscientific experiment. I picked five papers essentially at random
from the CP 1995 proceedings and five more from the CP 2004 proceedings, mixed the
titles together in a list, and challenged people to identify which papers came from which
conference. It is not easy to do. It may be a case of ”the grass is greener in the other fellow’s
yard”; but it seems to me that if these were bioscience conferences, or physics conferences,
or even literature conference, that the difference over a ten year period would jump out at
the participants.

We need more progress on tools and techniques for:

• Acquisition: Acquiring a complete and correct representation of real problems

• Automation: Automating efficient and effective modeling and solving

• Explanation: Explaining success and failure

And these must be embedded in an Interactive cycle, where Acquisition can inform
Automation which leads to Explanation which in turn informs further Acquisition.

This research program is not easy because ”ease of use” is not a science. However, that
presents us with the exciting opportunity to be the pioneers of a new ”usability science”

c©2007 Eugene C. Freuder.



Holy Grail Redux

and then to ”engineer usability”. Progress here can benefit from more ”meta-knowledge”,
knowledge about our knowledge, which itself might be modelled using constraints. We also
should make use of ”background knowledge”, which is not tied to a particular problem
statement.

Usability involves moving more of the burden from the human programmer or end-user
to the machine. Artificial Intelligence is a natural ally in that regard. I like to remind people
that there is an ”AI” in ”ConstrAInts”. Many fields of AI might profitably be brought to
bear, including:

• machine learning
• truth maintenance
• reasoning about uncertainty
• reasoning about preferences
• case-based reasoning
• human interaction
• natural language processing

• knowledge acquisition
• data mining
• automated deduction
• game playing
• software agents
• commonsense reasoning
• cognitive modeling

In moving ”beyond algorithmics”, there are also, of course, ”the usual suspects”:

• Engage with industry and government

• Bring CP into undergraduate and professional education

• Attract public attention

• Integrate the CP efforts in diverse disciplines

• Form and fund research networks

• Address the ”messiness” of the real world

I would especially encourage our community to find a larger, more ambitious, more
”marketable” context in which to embed and exploit our work. Optimisation is one candi-
date, but a surprisingly ”hard sell” in the outside world. Automatic Programming is the
”Holy Grail” ideal, but perhaps too ambitious. My current favourite is Decision Support.
Constraint Programming can help computers help people make better personal and business
decisions.

We should ask ourselves what constraints could do that would capture the imagination
- of students, researchers, funding agencies, the public at large. Can we agree on large-scale
”Challenges”? Decision support ”dashboards” that help us ”navigate the knowledge econ-
omy”? Software ”alter egos” that ”represent us” in the electronic world? ”Self-improving
software” that learns about its applications and its users? The typical reaction at this point
is either ”we’re not ready” or ”someone else is doing it”. But we need to have big dreams
and compete in a worthy game. To rise to such challenges we must work together, form
large teams. Ideally we will find government funding for such efforts, but we need not wait
on funding to begin.

Science is driven by metaphors. Biologists view molecular biology in computational
terms and computer scientists view computation in biological terms. We can look for new

4



Eugene C. Freuder

metaphors in the wider scientific literature. Popular science provides easy access, e.g. The

Tipping Point, Blink, The Wisdom of Crowds. Constraint Programming has made effective
use of metaphors in determining how to compute, e.g. physical metaphors for search (hill
climbing, simulated annealing). We might devote more attention to metaphors for what

to compute. Typically we take a problem solving approach: satisfaction, optimisation.
However, we could devote more attention to Constraint Programming as:

• Simulation/Prediction: A constraint network can be viewed as a large multi-variable
equation, where we can set some values (or ranges), have others set for us, and compute
the rest. This, especially in the context of uncertainty, can be used for prediction.
Qualitative Physics has used constraint processing to power physical models. It is
exciting to see the emergence of constraint programming in Systems Biology and
Computational Economics.

• Information Gathering: Information gathering is not just indexing. We cannot find
all the widgets weighing less than five pounds and bigger than a breadbox by typing
’widgets weight less five pounds size bigger breadbox’ into Google. This is a constraint
satisfaction problem, made more interesting when preferences are brought into the
mix.

• Configuration: If the world of web services and grid computing ever comes of age, the
most useful role for constraint satisfaction may not be actually to solve problems, but
to find a configuration of software services and computing resources that can be used
to solve the problems.

Ultimately what is most important is that we all individually seek new directions for our
field. Write a paper for CP 2010 that people will immediately recognize could not possibly
have appeared in CP 2000. At the CP 2006 panel I quoted this exchange between Alice
and the White Queen from Alice in Wonderland.

Alice laughed: ”There’s no use trying,” she said; ”one can’t believe impossible
things.”

”I daresay you haven’t had much practice,” said the Queen. ”When I was
younger, I always did it for half an hour a day. Why, sometimes I’ve believed
as many as six impossible things before breakfast.”

If you do not want to take advice from the White Queen, consider these observations
(from an interview in the New Scientist) by Shuji Nakamura, the winner of the 2006 Mil-
lennium Technology Prize:

Q: Why did you succeed with the blue LED when others failed?

A: I think I succeeded because I challenged the conventional wisdom ... The
most important thing in science and technology is to take risks

5


